
SE 801 : Software Project Lab - 3 (Final Report)

IoTWhiz: An IoT Android App Characterization Tool

Submitted By

Shafiq-us Saleheen

Roll: 1125

Internal Supervisor

Dr. Zerina Begum

Professor

Institute of Information Technology,

University of Dhaka

Supervised By : Mentored By:

Dr. Adwait Nadkarni Kaushal Kafle

Assistant Professor PhD Candidate

Department of Computer Science, William & Mary

William & Mary



ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my project supervisor, Dr.
Adwait Nadkarni Sir, Assistant Professor, William & Mary, Williamsburg
VA, for giving me an opportunity to go on with this project and providing
unconditional support throughout the project selection phase. I would also
like to thank my internal supervisor, Dr. Zerina Begum Ma’am, Professor,
Institute of Information Technology, University of Dhaka. Her invaluable
guidance and motivation helped me go further in this project. It is an honor to
work under her supervision. Finally, I would like to pay my gratitude to my
mentor, Kaushal Kafle, PhD candidate, William & Mary for being available
whenever I needed guidance.

1



ABSTRACT

In the world of mobile applications, the task of characterizing Android apps,
specifically in terms of their association with the Internet of Things (IoT) domain,
has proven to be quite challenging. In response, we present a comprehensive
framework designed to systematically analyze Android applications based on their
specific attributes. Our approach starts with collecting a diverse dataset consisting
both IoT and non-IoT apps from popular sources for analysis. By examining the
collected applications, we extract simple metrics that serve as discriminators
between the two categories. These metrics contain diverse aspects, including API
usage, permission patterns, dynamic code loading, typical UI layouts, class count
and code size measured in LOC, use of reflection, and data storage strategies in the
application's codebase. The proposed tool automates the process of analyzing
Android applications to extract these metrics related to their functionality and
codebase. By applying static code analysis techniques, it collects data from a
curated dataset of applications representing both IoT and non-IoT domains. The
tool's effectiveness is demonstrated through an empirical analysis of a diverse set
of Android applications, wherein it quantifies the differences between IoT and
non-IoT apps across various dimensions. These findings shed light on the distinct
characteristics that define each category, enabling developers to make informed
decisions and researchers to deepen their understanding of IoT application
development. The contributions of this work are twofold: 1) the development of a
tool that automates the extraction of metrics from Android applications, and 2) the
insights gained from the comparative analysis of IoT and non-IoT app
characteristics. There will be visualizations to reflect analysis output, ranging from
API usage distribution charts to dynamic code loading frequency pie charts, which
will showcase the findings. In conclusion, our systematic approach serves as a
guiding light in a complex terrain. By breaking down the process into discrete
steps, we empower researchers with a potent tool capable of automatically testing
between IoT and non-IoT Android applications, leading to more informed and
efficient decision-making in the dynamic app development landscape.

2



Table of Contents

Chapter 1 6
Introduction to IoTWhiz 6

1.1 Motivation 6
1.2 Problem Description 7
1.3 Scope 8

Chapter 2 9
Project Description of IoTWhiz 9

2.1 Quality Function Deployment (QFD) 9
2.1.1 Normal Requirements 9
2.1.2 Expected Requirements 9
2.1.3 Exciting Requirements 9

2.2 User Story 10
2.2.1 Creating a New Project 10
2.2.2 Analysis Metrics and Insights 10
2.2.3 Saving the Analysis Report 11
2.2.4 Accessing Tested Projects 11
2.2.5 Reported Findings and Comparisons 11
2.2.6 Accessing Saved Insights 11

2.3 Project Timeline 12
Chapter 3 13
Scenario-based Modeling 13

3.1 Use-case Diagram 13
3.1.1 Level-0 13
3.1.2 Level-1 13
3.1.2.1 Level-1.1 14

3.1.2.1.1 Level-1.1.1 14
3.2 Data Flow Diagram 15

3.2.1 ID-0 15
3.2.2 ID-1 15

Chapter 4 16
Class-based Modeling 16

4.1 Noun List with General Classifications 16
4.2 Selection Criteria 18
4.3 Verb List 19
4.4 CRC Cards 20
4.5 CRC Diagram 23

3



Chapter 5 24
Architectural Design 24

5.1 Architectural Context Diagram 24
5.2 Archetypes 24

5.2.1 MVC Pattern 24
5.2.2 Pipe & Filter Pattern 25

5.3 Refining the Architecture into Components 26
5.4 Describing Instantiations of the Components 26

Chapter 6 27
Methodology 27

6.1 Overview of the Workflow 27
6.2 Input Methods 27

6.2.1 APK Input 27
6.2.2 Androzoo Repository Integration 28

6.3 Dataset Handling 28
6.4 APK Handling 28

6.4.1 Download APK via SHA256 29
6.4.2 Get Source Code via SHA256 29
6.4.3 Direct Decompilation 29

6.5 Decompilation Process 29
6.6 Source Code Analysis 29

6.6.1 API Usage Examination 29
6.6.2 Dynamic Class Detection 30
6.6.3 Permissions Analysis 30
6.6.4 Reflection Usage Analysis 30
6.6.5 Database Storage Strategy Assessment 30
6.6.6 Code Metrics Analysis 31
6.6.7 UI Layout and Widget Analysis 31
6.6.8 Analysis Page Presentation 31

6.7 Output Report Generation 31
6.7.1 API Usage Report 32
6.7.2 Dynamic Class Usage Report 32
6.7.3 App Permissions Comparison Report 32
6.7.4 App Permissions Comparison Report 33
6.7.5 DB Storage Report 33
Objective: Evaluating diverse database storage methodologies adopted by IoT and
non-IoT apps. 33
Method: 33
6.7.6 Reflection Report 33

Chapter 7 35
User Interface & Task Analysis 35

4



7.1 User Analysis 35
7.2 Task Analysis 35

7.2.1 Upload APK 35
7.2.2 Download APK from AndroZoo 35
7.2.3 Get Source Code from AndroZoo 35
7.2.4 Upload Project Folder for Analysis 35
7.2.5 Generate Report PDF 36
7.2.6 Download Generated Report 36
7.2.7 View Top 10 Permission Co-occurrences for IoT & non-IoT 36

7.3 User Interface and User Manual 36
7.3.1 Home Page 36
7.3.2 Download from AndroZoo 37
7.3.3 Project Upload for Analysis 38
7.3.4 Generate & Download Report as PDF 40

Chapter 8 42
Results & Insights 42

8.1 Dataset 42
8.1.1 Initial Dataset Selection (51 IoT & 51 Non-IoT Apps) 42
8.1.2 Expanded Dataset (195 IoT & 195 Non-IoT Apps at 15 MB Size Threshold) 42
8.1.3 Impact of Dataset Expansion for Enhanced Comparative Analysis 42

8.2 API Usage Comparison 42
8.3 Dynamic Class Usage Comparison 44
8.4 App Permissions Comparison 46
8.5 Code Length Comparison 48
8.6 DB Storage Comparison 49
8.7 Reflection Comparison 51

Chapter 9 54
Preliminary Test Plan 54

9.1 High-level description of the testing goals 54
9.2 Summary of items and features to be tested 54

Chapter 10 59
Conclusion 59

5



Chapter 1

Introduction to IoTWhiz

IoTWhiz is a specialized software tool designed for in-depth characterization and analysis of IoT
(Internet of Things) Android applications. It provides essential insights into the structure,
dependencies, security, and user interface elements of IoT apps. IoTWhiz is tailored to address
the unique challenges posed by IoT app development.

1.1 Motivation

The advancement of Internet of Things (IoT) technology has ushered in a new era of
interconnected devices and applications, revolutionizing the way we interact with our
surroundings and making our lives more convenient and efficient. IoT has found applications in
various domains, from smart homes and wearable devices to industrial automation and
healthcare systems. However, the rapid growth of IoT has also brought forth unique challenges,
particularly in the development and security of IoT-centric Android applications.

As IoT continues to integrate into our daily lives, understanding and characterizing IoT Android
applications become crucial. These applications play a pivotal role in facilitating communication
between the user's mobile device and IoT devices, sensors, and services. Furthermore, ensuring
the security, efficiency, and reliability of these applications is paramount, as they often handle
sensitive data and control critical functions in IoT ecosystems.

The motivation behind this research project stems from the need to comprehensively analyze and
characterize IoT Android applications in terms of their code quality, architecture, and security
considerations. By developing an analysis tool and conducting an in-depth examination of a
diverse dataset of IoT and non-IoT Android apps, we aim to address the following key
objectives:

1. Differentiation: To distinguish IoT Android applications from their non-IoT counterparts
based on code characteristics, architecture, and usage patterns.

2. Insight Generation: To generate valuable insights into the common practices, challenges, and
anomalies prevalent in IoT app development.

3. Security Assessment: To identify security vulnerabilities and best practices in IoT Android
apps, aiding developers in building more secure applications.

6



4. Contribution to Knowledge: To contribute to the broader academic and research community
by offering a comprehensive understanding of the unique features and considerations in IoT
Android app development.

This research project not only serves as a valuable resource for developers, researchers, and
practitioners in the IoT domain but also contributes to the advancement of knowledge in software
engineering, mobile application development, and cybersecurity. By undertaking this, we aim to
shed light on the intricate landscape of IoT Android applications, ultimately improving their
quality, reliability, and security in an increasingly interconnected world.

1.2 Problem Description

In today's connected world, IoT has become an integral part of our lives. IoT Android
applications serve as the bridge between our mobile devices and a myriad of interconnected
smart devices and services, offering convenience, efficiency, and functionality. However, with
the rapid growth of IoT technology, the development and analysis of these applications pose
unique challenges.

1. Distinguishing IoT from Non-IoT Apps: The first challenge is differentiating between IoT
Android applications and their non-IoT counterparts. This distinction is crucial for developers,
researchers, and stakeholders who need to understand the specific characteristics of IoT apps.

2. Ensuring Code Quality and Efficiency: IoT applications often need to handle large volumes
of data and communicate with various devices, requiring efficient code. Ensuring code quality
and efficiency is essential to avoid performance issues and inefficiencies.

3. Addressing Security Concerns: IoT apps often deal with sensitive data and control important
functions. Security vulnerabilities can have severe consequences. It's vital to analyze and identify
potential security issues.

4. Improving Development Practices: Developers require insights into best practices for IoT
app development, including architecture choices, library usage, and code patterns.

5. Supporting Research and Analysis: Researchers need a reliable tool to assist in
characterizing IoT Android apps to contribute to the knowledge and advancement of the IoT
domain.

Our project aims to address these challenges by creating a tool capable of analyzing the code,
architecture, and security of IoT Android applications. By providing insights, differentiating
features, and security assessments, this tool will empower developers and researchers in making

7



informed decisions, improving code quality, and contributing to the development of secure and
efficient IoT Android applications.

1.3 Scope

IoTWhiz is designed as a specialized desktop tool for the comprehensive analysis and
characterization of IoT (Internet of Things) Android applications. Within its scope, IoTWhiz
incorporates several key features and focuses on specific objectives tailored to address the
unique challenges posed by IoT app development. The primary scope elements include:

● IoT Application Insight
● Code Structure Analysis
● Dependency Mapping
● UI Component Examination
● Data Handling Assessment
● Network Protocol Identification
● Security Evaluation
● Permission Scrutiny

8



Chapter 2

Project Description of IoTWhiz

2.1 Quality Function Deployment (QFD)

2.1.1 Normal Requirements

1. Users will be able to upload the project folder as it is an essential starting point for the analysis
process.

2. Users expect the tool to provide comprehensive metrics and insights to understand the
Android app better.

3. Saving analysis reports is crucial for future reference and documentation. The user should be
able to save the generated reports.

4. Users should be able to easily access and manage their past analysis reports.

2.1.2 Expected Requirements

1. Comparing metrics and insights between projects is a standard feature in similar tools.
Combined analysis from all the reports can be seen together for better understanding

2. Accessing and reviewing past insights is important to conclude a research finding.

3. Reports can be downloaded as PDF.

2.1.3 Exciting Requirements

1. Reports should contain clear analysis using charts, graphs and statistical tables if needed.

2. An analysis dashboard can be shown to save insights found from reports.

9



2.2 User Story

2.2.1 Creating a New Project

To begin the analysis of an Android app, we need to initiate the analysis process. We will be
prompted to select the folder containing the Android app project we want to analyze. Once the
project folder is selected, the tool will start the analysis automatically.

2.2.2 Analysis Metrics and Insights

During the analysis, the tool will calculate various software metrics to provide us with a
comprehensive understanding of the Android app. These metrics include:

Code Analysis:
❖ 1. Lines of Code: The total number of lines in the codebase.
❖ 2. Number of Classes/Functions/Methods: The code's structural elements.
❖ 3. Dynamic Code Loading: Detection of dynamic code loading mechanisms.
❖ 4. Reflection & Class Loading: Quantification of reflection and class loading usage.

Dependency Analysis:
❖ 5. Library Usage: Identification and counting of external libraries.

UI Analysis:
❖ 6. UI Layouts: Analysis of layout files for UI components.

Storage Analysis:
❖ 7. Data Storage Strategy: Understanding of data storage methods (e.g., SQLite,

SharedPreferences).

Data Analysis:
❖ 8. Data Serialization Format: Determination of data serialization format (e.g., JSON,

XML).
❖ 9. Protocol Usage: Identification of network protocols (e.g., HTTP, MQTT).

Permission Analysis:
❖ 10. Permission Analysis: Examination of permissions in AndroidManifest.xml.

After the analysis is complete, the tool will generate a comprehensive report containing these
metrics and insights.

10



2.2.3 Saving the Analysis Report

To save the generated analysis report, after the analysis, the user needs to click on the "Save
Report" option. They need to choose a location for the report and provide a name. The tool will
save the report in an accessible format for future reference.

2.2.4 Accessing Tested Projects

We can access previously analyzed projects by clicking on the "Tested Projects" option. Here, we
will find a list of saved analysis reports, including project names, analysis dates, and brief
summaries of findings.

2.2.5 Reported Findings and Comparisons

In this section, we can compare metrics and insights between different analyzed projects. We can
select multiple projects for comparison, and the tool will display differences and similarities in
metrics through graphs, charts, and statistical reports if necessary.

2.2.6 Accessing Saved Insights

This section allows users to access previously generated insights and reports. They can view a
list of saved insights and reports, and open them for review. They can easily save and organize
insights for reference and future analysis.

11



2.3 Project Timeline

FIGURE: Timeline of IoTWhiz

12



Chapter 3

Scenario-based Modeling

3.1 Use-case Diagram

3.1.1 Level-0

Primary Actor: User

FIGURE: Level-0 of Use-case Diagram
3.1.2 Level-1

Primary Actor: User

FIGURE: Level-1 of Use-case Diagram

13



3.1.2.1 Level-1.1

Primary Actor: User

FIGURE: Level-1.1 of Use-case Diagram
3.1.2.1.1 Level-1.1.1

Primary Actor: User

FIGURE: Level-1.1.1 of Use-case Diagram

14



3.2 Data Flow Diagram

3.2.1 ID-0

FIGURE: Data Flow Diagram - Level 0

3.2.2 ID-1

FIGURE: Data Flow Diagram - Level 1

15



Chapter 4

Class-based Modeling

Class-based modeling identifies classes, attributes and relationships that the system will use. It
represents the object. The system manipulates the operations.

Let’s take only solution space nouns to further do Class Based Modeling-

4.1 Noun List with General Classifications

1 Analysis 2

2 Android 2

3 Application 2, 7

4 Process 2, 7

5 Folder 2, 7

6 Project 2, 3, 7

7 Tool 2, 7

8 Metrics 2, 7

9 Insights 2, 3, 7

10 Software 2

11 Lines of Code 2

12 Code Analysis 2, 3, 7

13 Class 2

14 Function 2

15 Method 2

16 Codebase 2, 7

17 Element 2

18 Comments 2

16



19 Dependency Analysis 2, 3, 7

20 Library Usage 2

21 Permission Analysis 2, 3, 7

22 Cyclomatic Complexity 2

23 Dynamic Code 2

24 Reflection 2

25 Data Analysis 2, 3, 7

26 Data Serialization Format 2, 7

27 JSON 2, 7

28 XML 2, 7

29 Protocol Usage 2

30 HTTP 2, 7

31 MQTT 2, 7

32 Security Considerations 2, 3

33 UI Analysis 2, 3, 7

34 Storage Analysis 2, 3, 7

35 SQLite 2, 7

36 Report 2, 3, 7

37 User 4

38 Name 2

39 Description 2

40 Date 3

41 Time 3

42 Link 2

43 Comparison 2, 3, 7

17



44 Text 2

45 Summary 2

46 Reference 2

47 Graphs 2

48 Charts 2

49 Location 6

50 Future 3

51 Findings 2, 7

Potential Classes -
1. Project
2. Report
3. Insight
4. Comparison
5. Code Analysis
6. UI Analysis
7. Permission Analysis
8. Storage Analysis
9. Data Analysis
10. Dependency Analysis

4.2 Selection Criteria

1 Project 1, 2, 3, 4, 5

2 Report 1, 2, 3, 4, 5

3 Insight 1, 2, 3, 4, 5

4 Comparison 1, 2, 3, 4, 5

5 Metrics Analysis 1, 2, 3, 4, 5

6 UI Analysis 1, 2, 3, 4, 5

7 Tool 1, 2, 3, 4, 5

8 Metrics 1, 2, 3, 4, 5

18



9 Insights 1, 2, 3, 4, 5

10 Software 1, 2, 3, 4, 5

4.3 Verb List

19

1 create

2 initiate

3 select

4 start

5 calculate

6 provide

7 include

8 save

9 generate

10 click

11 choose

12 access

13 find

14 compare

15 display

16 allow

17 view

18 open

19 organize



4.4 CRC Cards

Class: Project

Attributes Methods

- projectName
- projectDescription
- createdDate
- projectFolderLocation

+ getProjectName()
+ getProjectDescription()
+ getCreatedDate()
+ getProjectFolder()
+ setProjectName(name)
+ setProjectDescription(description)
+ setCreatedDate(date)
+ setProjectFolder(folderPath)

Responsibilities Collaborator

1. Create project
2. Test project

Report

Class: Report

Attributes Methods

- reportIDanalysis
- Date

+ getReportID()
+ getAnalysisDate()
+ getInsights()

Responsibilities Collaborator

1. Generate reports
2. Save reports
3. See reports

Project
Code Analysis
Dependency Analysis
UI Analysis
Data Analysis
Permission Analysis
Storage Analysis

Class: Insight

Attributes Methods

20



- insightID
- Text
- dateCreated
- reportRef

+ getInsightID()
+ getText()
+ getDateCreated()
+ getReportAssociated()

Responsibilities Collaborator

1. Derive Insights
2. Save Insights

Report

Class: Comparison

Attributes Methods

- Reports
- comparisonResults

+ compareReports()
+ getComparisonResults()
+ createVisualizations()

Responsibilities Collaborator

1. Compare multiple reports
2. Create visualizations

Report
Insight

Class: Code Analysis

Attributes Methods

- linesOfCode
- numClasses
- numFunctions
- codeCommentsPercentage
- cyclomaticComplexity
- dynamicCodeLoadingDetected
- reflectionAndClassLoadingCount

+ calculateLinesOfCode()
+ calculateNumClasses()
+ calculateNumFunctions()
+ calculateCodeCommentsPercentage()
+ calculateCyclomaticComplexity()
+ detectDynamicCodeLoading()
+ countReflectionAndClassLoading()

Responsibilities Collaborator

1. Calculate LOC
2. Calculate number of

classes/methods/functions
3. Calculate code comments percentage
4. Calculate cyclomatic complexity

Project
Report

21



Class: Dependency Analysis

Attributes Methods

- libraryUsageCount + analyzeLibraryUsage()

Responsibilities Collaborator

1. Analyze library usage Project
Report

Class: Data Analysis

Attributes Methods

- dataSerializationFormat
- protocolUsage
- securityConsiderationsFound

+ determineDataSerializationFormat()
+ identifyProtocolUsage()
+ performSecurityAnalysis()

Responsibilities Collaborator

1. Determine serialization format
2. Identify protocol usage
3. Perform security analysis

Project
Report

Class: UI Analysis

Attributes Methods

- uiLayoutAnalyzeResults + analyzeUILayouts()

Responsibilities Collaborator

1. Analyze UI layout structure Project
Report

Class: Storage Analysis

Attributes Methods

- dataStorageStrategy + determineDataStorageStrategy()

22



Responsibilities Collaborator

1. Determine data storage strategy Project
Report

Class: Permission Analysis

Attributes Methods

- permissionAnalysisResults + analyzePermissions()

Responsibilities Collaborator

1. Analyze permission patterns Project
Report

4.5 CRC Diagram

FIGURE: CRC Diagram

23



Chapter 5

Architectural Design

5.1 Architectural Context Diagram

The architectural context diagram for the tool is given below-

FIGURE: ACD of IoTWhiz

Two categories of users are supposed to be the target for the tool. They are software developers
and researchers. Both types of users are the producers and also consumers of the information
through the tool. There are no subordinate, superordinate or peer-level systems.

5.2 Archetypes

5.2.1 MVC Pattern

The MVC architecture pattern is used as a primary archetype for the application. The models of
the archetypes are:

❖Model
❖ View
❖ Controller

24



FIGURE:MVC in IoTWhiz

5.2.2 Pipe & Filter Pattern

This pattern is applied when input data is to be transformed through a series of computational or
manipulative components into output data. A pipe-and-filter pattern has a set of components,
called filters, connected by pipes that transmit data from one component to the next.

We’ve used this pattern on Report & Comparison components.

FIGURE: Pipe-filter in Report Component

FIGURE: Pipe-filter in Comparison Component

25



5.3 Refining the Architecture into Components

Defining the set of top-level components that address the following functionality (Architectural
structure with top level components):

FIGURE: Top-level view of Components

5.4 Describing Instantiations of the Components

To accomplish this, an actual instantiation of the architecture is developed. By this we mean that
the architecture is applied to a specific problem with the intent of demonstrating that the
structure and components are appropriate.

FIGURE: Top-level view of Components (with instantiations)

26



Chapter 6

Methodology

This chapter outlines the development of our project and the methods employed to address
different situations.

6.1 Overview of the Workflow

FIGURE:Workflow of IoTWhiz

6.2 Input Methods

The input methods of the IoTWhiz tool allow users to access Android Package (APK) files for
analysis through two primary avenues:

6.2.1 APK Input

Users have the option to directly upload APK files into the IoTWhiz tool. This method enables
them to select and provide specific APK files stored on their local devices or accessible
directories. Once uploaded, the tool keeps the file so that later it can be used for the analysis
process.

27



6.2.2 Androzoo Repository Integration

IoTWhiz incorporates integration with Androzoo, a comprehensive collection of Android
applications, by leveraging its repository. This integration is facilitated by providing specific
credentials:

1. API Key: A unique identifier or authentication key provided by Androzoo to access its
repository.

2. SHA256 Code: A cryptographic hash function used as an identifier for a specific APK
file within Androzoo's vast collection.

Users input the API key and the SHA256 code associated with the desired APK file(s) into
IoTWhiz. Subsequently, the tool uses this information to authenticate and access the Androzoo
repository, allowing for direct retrieval and download of the respective APK file(s) identified by
the provided SHA256 code.

This integration offers users a convenient way to access a wide array of APK files stored within
Androzoo's repository without manually sourcing or storing each APK individually.

6.3 Dataset Handling

The dataset utilized by IoTWhiz consists of a significant collection of approximately 37,000
Android applications. These apps have been categorized into two primary groups: IoT and
non-IoT applications.

When users interact with IoTWhiz, the tool leverages this categorized dataset as a reference
point. It helps in providing comparative insights and identifying trends or patterns specific to IoT
or non-IoT applications during the analysis process.

Dataset Link:

shared_sha256_androzoo.csv

6.4 APK Handling

The APK handling functionality within IoTWhiz encompasses various methods to access and
analyze APKs, offering users multiple options for retrieval and decompilation:

28

https://drive.google.com/file/d/1g--JJQK4XXkLljRF6keSdDgu9gdhwDsx/view?usp=sharing


6.4.1 Download APK via SHA256

Users can request the download of specific APKs stored within a repository by providing their
unique SHA256 hash codes. This method serves as an efficient means to obtain APK files
directly based on their cryptographic hash identifiers.

6.4.2 Get Source Code via SHA256

This feature allows users not only to download APKs based on their SHA256 codes but also
initiates the decompilation process to retrieve the source code of these APKs. By simply
inputting the SHA256 code, the tool automatically performs both downloading and
decompilation, providing access to the application's source code for analysis.

6.4.3 Direct Decompilation

Alternatively, users have the option to directly upload APK files into the IoTWhiz tool. This
feature enables users to manually select and upload specific APKs from their local devices or
accessible directories.

6.5 Decompilation Process

IoTWhiz leverages JADX, a popular tool for Android application decompilation, to facilitate the
retrieval of source code from the provided APKs. JADX serves as the engine driving the
decompilation process, allowing the tool to extract the original source code from the APK files,
making it accessible for further analysis and inspection.

These functionalities collectively empower users to access, retrieve, and decompile APK files
through various methods within IoTWhiz. The tool provides a process for obtaining the source
code from APKs, allowing for in-depth analysis and examination of the application's inner
workings and functionalities.

6.6 Source Code Analysis

The methodology employed by IoTWhiz involves a comprehensive analysis of Android
application files to derive insights into various critical aspects of the app's structure, behavior,
and functionality.

6.6.1 API Usage Examination

The API usage methodology in the provided code involves a systematic search through the
project files to detect instances where specific APIs are utilized. The code traverses the project

29



directory to examine Java files. It utilizes regex patterns to identify API-related code snippets
and patterns like HttpURLConnection, OkHttp, etc., are used to spot specific API usages. When
a pattern matches, it logs the API call with file path and line number. Unique API calls are
collected and counted for a comprehensive overview.

6.6.2 Dynamic Class Detection

The tool identifies the usage of dynamic classes within the app. Dynamic classes are loaded
during runtime rather than being statically compiled into the app. It traverses the project
directory structure to inspect .java files. It uses some specific type of regex or other pattern
(dynamic_loading_pattern) to identify variations of ClassLoader or DexClassLoader instantiation
indicating dynamic code loading. When a match is found in a line, logs the occurrence with file
name, line number, and the triggering line of code. It gathers these instances into a set for
uniqueness and counts the total occurrences.

6.6.3 Permissions Analysis

The tool scrutinizes the permissions granted to the Android application. It navigates through the
provided directory structure. It targets files named AndroidManifest.xml known for containing
permission declarations in Android projects. It employs a specific regex pattern to spot lines
within the manifest file that declare Android permissions using <uses-permission> tags. It
matches patterns representing permissions like android.permission.<name>. It records instances
of permission-related lines found, noting file name, line number, and line content. It collects
these occurrences into a set to ensure uniqueness and tallies the total permissions detected.

6.6.4 Reflection Usage Analysis

Reflection is a technique used by apps to access normally inaccessible methods and fields.
IoTWhiz scrutinizes different types of reflection usage, including - class loading, method
retrieval, instance creation, invocation, field retrieval, access control, and annotation retrievals.
The function begins by defining the project folder's path. It specifies a set of reflection-related
patterns covering various types. It traverses the project directory to explore files, focusing on
.java files. It applies regex patterns from the defined set to each file's content, searching for
occurrences of reflection-related code.

6.6.5 Database Storage Strategy Assessment

IoTWhiz delves into how the app stores its data using various storage strategies such as cursor,
content resolver, media store queries, SQLiteOpenHelper, RoomDatabase patterns,
RealmDatabase, ObjectBox Database, Firebase Database, and SQLiteDatabase. It traverses the

30



project folder to explore .java files, seeking occurrences of each database-related pattern within
the file content. When a pattern matches, records occurrences including file paths, line numbers,
and corresponding line content into a structured format. It describes identified strategies using
predefined descriptions based on pattern matches.

6.6.6 Code Metrics Analysis

The tool provides an overview of the codebase by highlighting metrics such as total lines of
code, classes, and methods. These metrics offer a quantitative assessment of the application's
complexity and scale. It reads each line from the files, excluding empty lines, whitespaces, and
comments, to count non-comment and non-whitespace lines.

6.6.7 UI Layout and Widget Analysis

IoTWhiz also scrutinizes the app's user interface by analyzing the occurrence and placement of
UI layouts (e.g., linear layout, relative layout, nested layout) and widgets (e.g., text view, button).
This analysis offers insights into the app's design structure and layout preferences. It utilizes
os.walk to traverse through the specified folder (folder_path). It identifies and collects files with
.xml extension, typically representing layout files. It categorizes components into three groups:

● Widgets and Views,
● Layout Types,
● and Nested Layouts.

It iterates through each layout file in the provided list. It checks each line of the XML content for
specific elements (e.g., TextView, Button) indicating Widgets and Views. It identifies various
layout types (LinearLayout, RelativeLayout, ConstraintLayout) by parsing XML tags. It detects
nested layouts by recognizing closing tags for layout elements. It records identified components
along with their file path, line number, and specific component type for Widgets and Views. It
gathers layout types and nested layout occurrences with their respective file paths.

6.6.8 Analysis Page Presentation

The collected data across these analyses is compiled into an analysis page within IoTWhiz. This
page serves as a consolidated dashboard, presenting all the derived insights and data points,
aiding in easy comprehension and evaluation of the application's characteristics.

6.7 Output Report Generation

The output report generation process aims to compare and analyze key aspects between IoT and
non-IoT applications. By conducting comprehensive code analysis, this method aims to provide
statistical insights and visual representations highlighting differences in code characteristics and
usage patterns.

31



6.7.1 API Usage Report

Objective: The API Usage Report aims to compare and contrast the utilization of Application
Programming Interfaces (APIs).

Method:
Statistical Comparisons:

1) Descriptive Statistics: Calculation of total counts of observations, mean, maximum,
minimum, standard deviation, and percentiles for API usages in IoT and non-IoT apps.

2) Hypothesis Testing: T-tests for assessing significant differences in mean API usages
between the two categories.

Visualization Techniques:
1) Histograms: Representing the distribution of API usages in IoT and non-IoT apps to

visualize frequency and patterns across different usage levels.

6.7.2 Dynamic Class Usage Report

Objective: This report delves into the comparison of dynamic class usage between IoT and
non-IoT applications.

Method:
Statistical Comparisons:

1) Descriptive Statistics: Computation of descriptive metrics (mean, maximum, minimum,
standard deviation, etc.) for dynamic class usage in IoT versus non-IoT apps.

2) Hypothesis Testing: Similar T-test analysis to assess significant differences in dynamic
class usage between IoT and non-IoT app categories.

Visualization Techniques:
1) Box Plots: Visualization of the distribution of dynamic class usage in both app categories

to depict frequency variations.

6.7.3 App Permissions Comparison Report

Objective: Comparing permission co-occurrences and evaluating required permissions between
IoT and non-IoT apps.

Method:
Statistical Comparisons:

1) Permission Co-Occurrences: Identifying the top 10 permission co-occurrences between
IoT and non-IoT apps, showcasing which combinations are more prevalent in each
category.

32



2) T-Statistical Analysis: Assessing if there are significant differences in the permissions
required between IoT and non-IoT apps.

Visualization Techniques:
1) Distribution Path Charts: Displaying the frequency distribution of permissions for IoT

versus non-IoT apps, categorized by permission types.

6.7.4 App Permissions Comparison Report

Objective: Offers insights into the comparison of code length, structure, and complexity.
Method:
Statistical Comparisons:

1) Descriptive Statistics: Calculating descriptive metrics for code length, classes, and
methods between IoT and non-IoT apps.

2) Correlation Matrix: Establishing correlations between lines of code, classes, and
methods for both app categories.

Visualization Techniques:
1) Box Plots: Visualizing variations in code metrics like lines of code, classes, and methods

between IoT and non-IoT apps using box plots.
2) Scatter Plots: Visualizing variations in code metrics like lines of code, classes, and

methods between IoT and non-IoT apps using scatter plots.

6.7.5 DB Storage Report

Objective: Evaluating diverse database storage methodologies adopted by IoT and non-IoT
apps.

Method:
Statistical Comparisons:

1) Database Strategy Percentages: Analyzing the prevalence of different database storage
strategies between IoT and non-IoT apps.

2) T-tests and Chi-square Tests: Statistical tests conducted to compare and evaluate the
significance of database strategies.

6.7.6 Reflection Report

Objective: Presents a comparison of reflection usage across IoT and non-IoT apps.

Method:
Statistical Comparisons:

33



1) Reflection Types Analysis: Conducting statistical analyses to compare the usage of
different types of reflections between IoT and non-IoT apps.

2) T-test Results: Providing insights into significant differences in reflection types utilized.
Visualization Techniques:

1) Comparative Graphs: Graphical representation illustrating variations in different
reflection types between IoT and non-IoT apps.

These methodologies aim to highlight and compare specific aspects of IoT and non-IoT apps,
providing both numerical insights and graphical representations for a comprehensive
understanding of their differences in code behavior and characteristics.

34



Chapter 7

User Interface & Task Analysis

Effective user interface design, guided by established principles, not only shapes how users
interact with digital systems but also lays the foundation for an intuitive and user-friendly
environment. A thoughtfully designed interface enhances user satisfaction by meeting usability
and accessibility standards. User interface design serves as a crucial communication bridge
between humans and computers.

7.1 User Analysis

Researchers: The tool caters to researchers involved in comprehensive analysis and comparison
of IoT and non-IoT applications. Researchers can leverage the detailed reports and statistical
analyses generated by IoTWhiz to draw conclusions and contribute to the body of knowledge in
the field of IoT app characterization.

Developers: Software developers are a primary audience, utilizing IoTWhiz for code analysis.
They can assess the structure, permissions, and API usage of their apps, gaining insights into
optimizing their applications for security, efficiency, and functionality.

7.2 Task Analysis

7.2.1 Upload APK

● Upload an APK file for the decompilation process

7.2.2 Download APK from AndroZoo

● Enter API key & SHA256 code
● Tick on checkbox if an IoT app, do nothing if a non-IoT app and start downloading

7.2.3 Get Source Code from AndroZoo

● Enter API key & SHA256 code
● Tick on checkbox if an IoT app, do nothing if a non-IoT app and start downloading &

decompiling

7.2.4 Upload Project Folder for Analysis

● Tick on checkbox if an IoT app, do nothing if a non-IoT app
● Upload a decompiled/existing project source code folder for the analysis

35



7.2.5 Generate Report PDF

● Generate report of IoT and non-IoT app analysis

7.2.6 Download Generated Report

● Download report of IoT and non-IoT app analysis to see comparison insights

7.2.7 View Top 10 Permission Co-occurrences for IoT & non-IoT

● Show outputs of permission occurrences from app permissions analysis based on app
type

7.3 User Interface and User Manual

The user interface is structured to present comprehensive analysis in a visually accessible
manner. The layout is designed for ease of navigation and interpretation of various statistical and
comparative analyses. The user manual provides a step-by-step guide on using IoTWhiz,
explaining input methods, functionalities, and interpretation of analysis outputs.

7.3.1 Home Page

FIGURE: Homepage of IoTWhiz
User will view the home page after entering the tool. This screen accommodates task 1.

Task-1: Upload APK - Users can upload an APK file for the decompilation process to retrieve
the application's source code.

36



7.3.2 Download from AndroZoo

FIGURE: Dropdown of Decompile APK

FIGURE:Modal View of Download from AndroZoo

37



FIGURE: Successful Decompilation using JadX

Task-2: Download APK from AndroZoo - Entering the API key and SHA256 code enables
users to download APKs from AndroZoo's repository. They can specify the app type
(IoT/non-IoT) by ticking the respective checkbox before initiating the download.

Task-3: Get Source Code from AndroZoo - Similar to downloading APKs, users input the API
key and SHA256 code. They can choose to decompile the downloaded APK file by selecting the
IoT/non-IoT checkbox.

7.3.3 Project Upload for Analysis

Task-4: Upload Project Folder for Analysis - Users upload the decompiled or existing project
source code folder for further analysis. They categorize the uploaded project as IoT or non-IoT
by ticking the checkbox accordingly.

Then, an analysis dashboard will be generated containing the analysis output for the input project
folder. The dashboard will contain data of - type of application (IoT/non-IoT), detected APIs,
detected dynamic class loading, detected permissions, layout & widgets, LOC, number of classes
& methods, reflection usage, database storage strategy etc.

38



FIGURE: Upload Project Folder for Analysis

FIGURE: Analysis Dashboard of the given app

39



7.3.4 Generate & Download Report as PDF

Task-5: Generate Report PDF - Users can generate a comprehensive report summarizing the
analysis conducted on both IoT and non-IoT apps.

FIGURE: Result Page of IoTWhiz

Task-6: Download Generated Report - It allows users to download the generated report for
detailed insights and comparisons between IoT and non-IoT app analyses.

FIGURE: Downloading Report of IoTWhiz

40



FIGURE: Downloaded Report as PDF

Task-7: View Top 10 Permission Co-Occurrences - This task presents the top 10 permission
co-occurrences for both IoT and non-IoT apps, derived from the app permissions analysis. It
shows the occurrence frequency based on the app type.

FIGURE: Top 10 Permission Co-occurrences

41



Chapter 8

Results & Insights

This detailed analysis provides comprehensive insights into the similarities and differences
between IoT and non-IoT applications across various aspects like API usage, permissions, code
characteristics, database storage, and reflection usage. These insights can guide development
choices and help in understanding the distinctive features of both IoT and non-IoT apps.

8.1 Dataset

8.1.1 Initial Dataset Selection (51 IoT & 51 Non-IoT Apps)

The selection of 51 IoT and 51 non-IoT apps laid the foundation for the comparative analysis.
This initial dataset likely aimed to provide an exploratory understanding of key metrics and
characteristics distinguishing these two categories. It allowed for a focused examination,
possibly revealing preliminary trends and patterns.

8.1.2 Expanded Dataset (195 IoT & 195 Non-IoT Apps at 15 MB Size Threshold)

Expanding the dataset to 195 apps in each category, filtered by a size threshold of 15 MB,
represents a significant enhancement to the initial sample size. The imposition of the size
threshold ensured a more standardized and refined selection of apps, potentially filtering out
outliers and maintaining a more homogeneous dataset for comparative analysis.

8.1.3 Impact of Dataset Expansion for Enhanced Comparative Analysis

The increased dataset size and refined criteria would have likely strengthened the ability to draw
meaningful conclusions. It offered a more comprehensive view of the landscape, enabling a more
confident identification of nuanced differences and similarities between IoT and non-IoT
applications across various attributes, such as API usage, code length, permissions, and database
storage strategies.

8.2 API Usage Comparison

In the initial dataset, where 51 IoT and 51 non-IoT apps were analyzed, a stark disparity in API
usage was evident. The mean API usage for IoT apps stood notably higher at approximately
23.88 compared to non-IoT apps, which averaged around 8.61. The standard deviation for both
categories indicated a considerable variability in API usages, being 22.52 for IoT and 9.78 for
non-IoT apps.

42



The expanded dataset, encompassing 195 apps in each category and employing a size threshold
of 15 MB, reflected a different scenario. The mean API usages for IoT and non-IoT apps were
approximately 17.61 and 19.46, respectively. The standard deviation for API usages remained
high for both, around 17.52 for IoT apps and notably higher at 24.50 for non-IoT apps.

Initial Dataset Expanded Dataset

Type IoT Apps non-IoT Apps IoT Apps non-IoT Apps

Count 51 51 195 195

Mean 23.88 8.61 17.61 19.46

Std 22.52 9.78 17.52 24.50

Median 22 6 14 10

Min 0 0 0 0

Max 121 38 121 167

TABLE: Descriptive Statistics of API Usage

In the initial dataset, the difference in mean API usage between IoT and non-IoT apps was
significant, but with the expanded dataset, this distinction diminished. The means for both
categories converged closer together, indicating a smaller discrepancy in API usage between IoT
and non-IoT apps in the larger dataset.

The variability in API usage remained relatively high for both categories in both datasets,
suggesting a wide range of API utilization across the apps studied. Despite this, the analysis of
the expanded dataset suggests a less pronounced difference between IoT and non-IoT apps in
terms of API usage, contrary to the substantial gap observed in the initial dataset.

Verdict

Initial Dataset There is a significant difference between IoT and Non-IoT API usages.

Expanded Dataset There is no significant difference between IoT and Non-IoT API usages.

TABLE: Verdict of API Usage

43



FIGURE: API Usage Distribution (Initial vs Expanded)

The graph shows a clear difference between the distribution of API usage in IoT and non-IoT
apps.

Non-IoT apps: The distribution is more spread out, with a peak frequency around 25-50 API
usages. This suggests that there's a wider range of API usage in non-IoT apps, with some apps
using many APIs and others using only a few.
IoT apps: The distribution is skewed towards lower API usage, with the peak frequency around
0-25 API usages. This indicates that most IoT apps tend to use fewer APIs than non-IoT apps.

IoT apps often focus on collecting and processing data from sensors and other devices. This
might involve fewer external interactions compared to non-IoT apps that deal with user
interfaces, social interactions, or other activities.

8.3 Dynamic Class Usage Comparison

In the initial dataset, consisting of 51 IoT and 51 non-IoT apps, the analysis of dynamic class
loading usage revealed a substantial disparity. The mean dynamic class loading for IoT apps
averaged around 6.35, notably higher than the average of approximately 3.1 for non-IoT apps.
Both categories exhibited relatively high variability in dynamic class loading, with standard
deviations of 5.68 for IoT and 3.75 for non-IoT apps.

In the expanded dataset, encompassing 195 apps in each category and maintaining a size
threshold of 15 MB, a different trend emerged. The mean dynamic class loading for IoT and
non-IoT apps was approximately 5.5 and 5.68, respectively. Both categories continued to
demonstrate high variability in dynamic class loading, with standard deviations of around 5.23
for IoT and 6.77 for non-IoT apps.

44



Initial Dataset Expanded Dataset

Type IoT Apps non-IoT Apps IoT Apps non-IoT Apps

Count 51 51 195 195

Mean 6.35 3.10 5.50 5.68

Std 5.68 3.75 5.23 6.77

Median 5 2 4 4

Min 0 0 0 0

Max 23 17 23 46

TABLE: Descriptive Statistics of Dynamic Class Usage

In the initial dataset, a statistically significant difference was observed in the mean dynamic class
loading between IoT and non-IoT apps. However, in the expanded dataset, this significant
difference diminished. The means for both categories converged closer together, indicating a
smaller discrepancy in dynamic class loading between IoT and non-IoT apps in the larger
dataset.

Verdict

Initial Dataset There is a statistically significant difference in the mean dynamic class
loading usage between IoT and non-IoT apps.

Expanded Dataset There is no statistically significant difference in the mean dynamic class
loading usage between IoT and non-IoT apps

TABLE: Verdict of Dynamic Class Loading

The majority of data points in the IoT boxplot are clustered within a smaller range on the x-axis
(number of classes). This means that most IoT apps tend to use a similar, relatively low number
of dynamic classes. This central cluster forms the "box" portion of the boxplot.

In contrast, the non-IoT boxplot has data points spread out over a wider range, indicating a
greater variety in how many classes different non-IoT apps use.

There are a few data points in the non-loT app boxplot that extend beyond the whiskers (the
upper and lower bars). These are outliers, indicating a small number of non-loT apps that use a
significantly higher number of dynamic classes than the majority.

45



FIGURE: Dynamic Class Usage Box Plots (Initial vs Expanded)

8.4 App Permissions Comparison

In the initial dataset consisting of 51 IoT and 51 non-IoT apps, the analysis of permissions
revealed a notable difference between the two categories. On average, IoT apps requested around
16.7 permissions, significantly higher than the approximately 8.1 permissions requested by
non-IoT apps. Both categories exhibited relatively high variability in permission requests, with
standard deviations of approximately 7.4 for IoT and 7.1 for non-IoT apps.

However, in the expanded dataset, encompassing 189 IoT and 195 non-IoT apps and maintaining
a size threshold of 15 MB, the difference in permission requests between the two categories
reduced. The mean permissions requested by IoT apps decreased slightly to around 16.4, while
for non-IoT apps, it increased to approximately 9.4. The standard deviations remained high for
both categories, approximately 10.4 for IoT and 7.2 for non-IoT apps.

Initial Dataset Expanded Dataset

Type IoT Apps non-IoT Apps IoT Apps non-IoT Apps

Count 51 51 195 195

Mean 16.71 8.14 16.36 9.38

Std 7.38 7.13 10.43 7.18

Median 16 6 15 7

Min 4 0 0 0

Max 37 31 90 33

TABLE: Descriptive Statistics of App Permissions

46



Verdict

Initial Dataset IoT apps require significantly more permissions than non-IoT apps.

Expanded Dataset IoT apps require significantly more permissions than non-IoT apps.

TABLE: Verdict of App Permissions

FIGURE: Distribution Path of App Permissions

As we can see, the top five app permissions needed for IoT & non-IoT-

IoT Non-IoT

1. Network Communication 1. Network Communication

2. Storage 2. Notification

3. Notification 3. Storage

4. Sensors 4. Wi-Fi

5. Wi-Fi 5. Phone Information

TABLE: Top Five Occurrences

47



The top 10 permission co-occurrences for both datasets should also be considered. These patterns
might highlight specific permissions that frequently appear together in IoT and non-IoT apps,
offering insights into the distinct permission needs of each category.

It shows that IoT apps tend to give more permissions to network and connectivity, more than
non-IoT apps. Overall, IoT apps require a lot more permissions than non-IoT apps.

8.5 Code Length Comparison

In the comparison of code length metrics between IoT and non-IoT datasets, several key
observations were made.

IoT Data:
Lines of Code: The mean code length was approximately 612,476, with a standard deviation of
765,197. The range varied from 0 to 2,368,397 lines of code.
Number of Classes: The mean count of classes was around 7,966, with a standard deviation of
10,274. The range spanned from 0 to 31,699 classes.
Number of Methods: On average, there were approximately 84,378 methods, with a standard
deviation of 111,314. The range varied from 0 to 343,504 methods.

Non-IoT Data:
Lines of Code: The mean code length was about 578,340, with a standard deviation of 861,572.
The range spanned from 195 to 2,637,678 lines of code.
Number of Classes: The mean count of classes was approximately 8,142, with a standard
deviation of 12,570. The range extended from 15 to 38,350 classes.
Number of Methods: On average, there were about 78,216 methods, with a standard deviation
of 115,219. The range varied from 12 to 353,231 methods.

Correlation:
IoT: Strong correlations existed among all code length metrics, with values ranging from 0.97 to
1.0.
Non-IoT: Similarly strong correlations were observed among code length metrics, ranging from
0.98 to 1.0.
Boxplots and Scatterplots:
Boxplots and scatterplots comparing IoT versus non-IoT code length metrics revealed:

48



FIGURE: Box Plots & Scatter Plots of LOC, class & methods

Box Plots: Showed overlap in the distribution of code length metrics between IoT and non-IoT
datasets.

Scatterplots: Displayed a trend of similarity in code length characteristics between IoT and
non-IoT data points, with some scattering but no clear separation between the two categories.

Overall, the analysis suggests a considerable resemblance in code length characteristics between
IoT and non-IoT datasets. While there are variations within each category, the correlations and
visualizations indicate a notable similarity in code structure, class counts, and method counts
between the two sets of applications, pointing toward convergence in coding practices or styles
across IoT and non-IoT app development.

8.6 DB Storage Comparison

The analysis delves into the distribution and correlations between different database strategies
employed within applications, specifically focusing on nine distinct strategies: Cursor,
ContentResolver, MediaStoreQueries, SQLiteOpenHelper, RoomDatabasePatterns,
RealmDatabase, FirebaseDatabase, ObjectBoxDatabase, and SQLiteDatabase. The analysis

49



involved percentage distributions, t-tests, chi-square tests, and correlation matrices for these
database strategies.

Strategy IoT (%) Non-IoT (%)

Cursor 28.42051 25.82564

ContentResolver 4.40769 4.23026

MediaStoreQueries 1.11846 0.62872

SQLiteOpenHelper 2.57538 2.85026

RoomDatabasePatterns 0.9487 1.8821

RealmDatabase 8.98821 6.93333

FirebaseDatabase 0.24513 0.22667

ObjectBoxDatabase 0.00 0.00

SQLiteDatabase 11.28718 11.34974

TABLE: Percentage of DB Usage

Statistical Tests:
1) T-tests: Showed varying degrees of statistical significance for different database

strategies between initial and expanded datasets. For instance, MediaStoreQueries
displayed a statistically significant difference (p = 0.0002), while SQLiteDatabase
showed no significant difference (p = 0.9690).

2) Chi-square tests: Indicated the degree of association between different strategies within
the datasets. MediaStoreQueries demonstrated a significant association (p = 0.0139),
while other strategies didn’t show significant associations.

3) Correlation Matrix: The correlation matrix revealed the relationships between database
strategies. High positive correlations were observed between SQLiteDatabase and Cursor
(0.8168), SQLiteDatabase and SQLiteOpenHelper (0.9253), and Cursor and
SQLiteOpenHelper (0.7699). These correlations suggest a potential interdependence or
common usage patterns between these strategies within the apps.

50



The analysis underscores both similarities and disparities in the utilization of database strategies
between the initial and expanded datasets. While some strategies like MediaStoreQueries
exhibited significant differences and associations, others remained relatively consistent across
datasets. The high correlations between certain strategies point towards their frequent combined
usage within applications, indicating potential common functionalities or complementary usage
patterns.

8.7 Reflection Comparison

The analysis compares the usage patterns of different reflection-related actions between IoT and
non-IoT applications. This comparison involves various metrics such as counts, means,
percentiles, and statistical tests for each reflection activity.

Reflection
Metric App Type Count Mean Std Dev Min Median Max

Class
Loading

IoT 195 84.86 69.52 0.0 72.0 341.0

Non-IoT 195 81.99 120.21 0.0 47.0 1289.0

Method
Retrieval

IoT 195 160.81 114.70 0.0 152.0 630.0

Non-IoT 195 167.18 196.90 0.0 115.0 2008.0

Instance
Creation

IoT 195 274.79 460.82 0.0 184.0 5782.0

Non-IoT 195 191.78 242.12 0.0 118.0 1572.0

Method
Invocation

IoT 195 960.57 2017.40 0.0 217.0 17695.0

51



Non-IoT 195 881.81 1662.48 0.0 164.0 8830.0

Field
Retrieval

IoT 195 6.74 6.88 0.0 5.0 35.0

Non-IoT 195 6.80 8.86 0.0 4.0 55.0

Access
Control

IoT 195 0.0 0.0 0.0 0.0 0.0

Non-IoT 195 0.0 0.0 0.0 0.0 0.0

Annotations
Retrieval

IoT 195 1.49 4.28 0.0 0.0 31.0

Non-IoT 195 1.95 5.55 0.0 0.0 35.0

TABLE: Descriptive Statistics of Various Reflection Types

This table presents the comparison of metrics for different reflection categories between IoT and
non-IoT applications

Statistical Tests:
T-Tests:

No significant differences were observed in Class Loading, Method Retrieval, Method
Invocation, Field Retrieval, Access Control, Annotations Retrieval, and Total Reflections
between IoT and non-IoT apps.

However, there's a significant difference in Instance Creation (p = 0.0265), signifying disparate
usage patterns between IoT and non-IoT apps regarding creating instances.

The analysis of reflection-related actions across IoT and non-IoT applications indicates
similarities in most activities. However, Instance Creation stands out as significantly different

52



between the two categories. This suggests that while many reflection activities are similarly
utilized across both IoT and non-IoT apps, the creation of instances exhibits notable variance.

FIGURE: Box Plots of Reflection Usages

53



Chapter 9

Preliminary Test Plan

In this chapter, a high level description of testing goals and summary of features to be tested are
presented.

9.1 High-level description of the testing goals

High-level testing goals for the tool can be summarized as follows:

1. Validate the tool's ability to perform comprehensive analysis on Android app projects,
including code metrics, insights, and structural elements.

2. Ensure that users can create, save, and access analysis reports easily, maintaining data integrity
and accessibility.

3. Verify that the tool accurately identifies and reports on various software metrics, such as lines
of code, code complexity, library usage, permissions, and more.

4. Confirm that users can effectively compare and analyze findings between different projects
through clear visual representations.

5. Test the tool's user interface for user-friendliness, efficiency, and error handling in various
scenarios.

6. Assess the tool's overall performance, stability, and accuracy in handling Android app analysis
tasks across different project sizes and complexities.

9.2 Summary of items and features to be tested

Test ID: T1

Test Case: Test if the tool calculates the total number of lines in the codebase correctly.
Input Test Data: Source code folder
Steps To Be Executed:
1. Run the tool.
2. Calculate the lines of code.

54



Expected Result: The calculated lines of code should match the actual number of lines in the
input source code folder files.
Target Item: Code Metrics Module
Pass/Fail: Pending

Test ID: T2

Test Case: Test if the tool accurately counts the number of classes, functions, and methods in
the codebase.
Input Test Data: Source code folder
Steps To Be Executed:
1. Run the tool.
2. Count the number of classes, functions, and methods.
Expected Result: The counted structural elements should match the actual count in the input
Java source code file.
Target Item: Code Metrics Module
Pass/Fail: Pending

Test ID: T3

Test Case: Test if the tool correctly calculates the percentage of code that is commented.
Input Test Data: Source code folder
Steps To Be Executed:
1. Run the tool.
2. Calculate the percentage of code that is commented.
Expected Result: The calculated percentage of code comments should match the actual
percentage in the input source code file.
Target Item: Code Metrics Module
Pass/Fail: Pending

Test ID: T4

Test Case: Test if the tool accurately assesses the code complexity using cyclomatic
complexity.
Input Test Data: Source code folder
Steps To Be Executed:
1. Run the tool.
2. Calculate the cyclomatic complexity.
Expected Result: The calculated cyclomatic complexity should match the actual complexity
of the input source code file.
Target Item: Code Metrics Module

55



Pass/Fail: Pending

Test ID: T5

Test Case: Test if the tool correctly identifies and counts external libraries used in the
codebase.
Input Test Data: Source code folder files with library references
Steps To Be Executed:
1. Run the tool.
2. Identify and count external libraries.
Expected Result: The identified libraries and their count should match the libraries referenced
in the input source code file.
Target Item: Dependency Analysis Module
Pass/Fail: Pending

Test ID: T6

Test Case: Test if the tool accurately examines and reports permissions in
AndroidManifest.xml.
Input Test Data: AndroidManifest.xml file with permissions
Steps To Be Executed:
1. Run the tool.
2. Examine and report permissions.
Expected Result: The reported permissions should match the permissions declared in the
input AndroidManifest.xml file.
Target Item: Permission Analysis Module
Pass/Fail: Pending

Test ID: T7

Test Case: Test if the tool correctly detects dynamic code loading mechanisms.
Input Test Data: Source code files with dynamic code loading
Steps To Be Executed:
1. Run the tool.
2. Detect dynamic code loading.
Expected Result: The detected dynamic code loading mechanisms should match those present
in the input source code file.
Target Item: Dependency Analysis Module
Pass/Fail: Pending

Test ID: T8

56



Test Case: Test if the tool quantifies reflection and class loading usage accurately.
Input Test Data: Source code files with reflection and class loading
Steps To Be Executed:
1. Run the tool.
2. Quantify reflection and class loading usage.
Expected Result: The quantified usage should match the reflection and class loading present
in the input source code file.
Target Item: Dependency Analysis Module
Pass/Fail: Pending

Test ID: T9

Test Case: Test if the tool determines the data serialization format correctly.
Input Test Data: Source code files with data serialization
Steps To Be Executed:
1. Run the tool.
2. Determine the data serialization format.
Expected Result: The determined format should match the actual data serialization format
used in the input source code file.
Target Item: Data Analysis Module
Pass/Fail: Pending

Test ID: T10

Test Case: Test if the tool identifies network protocols used accurately.
Input Test Data: Source code files with network communication
Steps To Be Executed:
1. Run the tool.
2. Identify network protocols used.
Expected Result: The identified network protocols should match those used in the input
source code file.
Target Item: Data Analysis Module
Pass/Fail: Pending

Test ID: T11

Test Case: Test if the tool performs static analysis for security vulnerabilities correctly.
Input Test Data: Source code files with security vulnerabilities
Steps To Be Executed:
1. Run the tool.
2. Perform static analysis for security vulnerabilities.

57



Expected Result: The tool should correctly identify and report security vulnerabilities in the
input source code files.
Target Item: Data Analysis Module
Pass/Fail: Pending

Test ID: T12

Test Case: Test if the tool accurately analyzes layout files for UI components.
Input Test Data: Android layout XML files
Steps To Be Executed:
1. Run the tool.
2. Analyze layout files for UI components.
Expected Result: The tool should correctly identify and report UI components and their
properties in the input layout XML files.
Target Item: UI Analysis Module
Pass/Fail: Pending

Test ID: T13

Test Case: Test if the tool determines the data storage strategy correctly.
Input Test Data: Source code files with data storage operations
Steps To Be Executed:
1. Run the tool.
2. Determine the data storage strategy.
Expected Result: The determined data storage strategy should match the actual strategy used
in the input source code files.
Target Item: Data Storage Analysis Module
Pass/Fail: Pending

These test cases cover each of the mentioned metrics and their respective modules. You can
execute these tests to ensure that your tool functions correctly and produces accurate results.

58



Chapter 10

Conclusion

In conclusion, IoTWhiz stands as a powerful and specialized desktop tool dedicated to the
intricate world of IoT (Internet of Things) Android applications. Through its innovative program
slicing approach, IoTWhiz enables in-depth characterization of IoT apps, providing insights into
their structure, behavior, and dependencies. By dissecting code structures, evaluating
dependencies, analyzing user interfaces, assessing data handling, identifying network protocols,
and scrutinizing security and permissions, IoTWhiz offers a comprehensive toolkit for
developers, project managers, and security analysts in the IoT application domain.

With a focus on optimizing software maintenance, enhancing performance, conducting program
analysis, and fortifying security, IoTWhiz empowers professionals to navigate the unique
challenges presented by IoT app development. By addressing these challenges head-on, IoTWhiz
contributes to the continued growth and success of the IoT ecosystem, ensuring that IoT
applications are not only efficient and user-friendly but also secure and reliable.

As the IoT landscape continues to expand and evolve, tools like IoTWhiz play a crucial role in
supporting developers and analysts in their quest to create cutting-edge IoT solutions. In an
ever-connected world, IoTWhiz stands as a beacon of knowledge and insight, helping to shape
the future of IoT application development and ensuring that IoT-powered devices and services
continue to enrich our lives in meaningful and secure ways.

59



References

adwaitnadkarni.com/downloads/manandhar-ccs22.pdf

IEEE Xplore Full-Text PDF:

Download APK on Android with Free Online APK Downloader - APKPure

Androzoo home (uni.lu)

What is Hypothesis Testing in Statistics? Types and Examples | Simplilearn

What You Need to Know About Inferential Statistics to Boost Your Career in Data Science

(simplilearn.com)

60

https://www.adwaitnadkarni.com/downloads/manandhar-ccs22.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8986632
https://m.apkpure.com/#google_vignette
https://androzoo.uni.lu/
https://www.simplilearn.com/tutorials/statistics-tutorial/hypothesis-testing-in-statistics
https://www.simplilearn.com/inferential-statistics-article
https://www.simplilearn.com/inferential-statistics-article

